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Abstract. With the rapid development of the Internet and video stream-
ing, video piracy websites (VPWs) pose a global challenge to the copy-
right protection of digital media as the black market for pirated videos
continues to grow. In this paper, we design a Video Piracy Websites
Detection (VPWD) architecture and implement the system that sup-
ports the end-to-end process of possible VPW collection to detection.
When designing the architecture, we find that there are currently no
publicly available datasets containing the contents of English and Chi-
nese VPWs. Therefore, we build a real-world dataset of features target-
ing VPWs, containing 14,254 possible English and Chinese VPWs, with
5,759 of them labeled. To the best of our knowledge, it is the largest
dataset for VPW detection. We aim to solve the challenges of detecting
VPWs. Given the constant emergence of new VPWs with different VPW-
related keywords and languages, a model trained once is not enough for
detection. We demonstrate that such a fixed model will suffer from per-
formance drops of over 8%, when possible VPWs with new keywords or
languages are added to the database, resulting in feature distribution
change. Our VPWD architecture is continual learning-based, which can
continually learn features of VPWs. As far as we are aware, it is the
first work to utilize continual learning for piracy website detection. We
conduct experiments to compare continual learning algorithms in our
VPWD architecture and achieve an accuracy of 96.4% on average, which
is 0.5% higher than without continual learning algorithms.

Keywords: Website Detection · Piracy Websites · Continual learning.

1 Introduction

The rapid development of the Internet benefits content creators and users, but
it also facilitates the fast global growth of the black market of video piracy
websites (VPWs), challenging the copyright protection of digital media. VPWs
distribute video content without permission from copyright holders or legitimate
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Fig. 1. Examples of VPWs and Non-VPWs.

purchasers, significantly financially impacting movies, TV shows, and other dig-
ital media industries [7]. VPWs are a hotbed for the growth of pirated content,
accessed over 82 billion times worldwide in the first nine months of 2021 alone [1].
The United States is the country most affected by pirated digital media content,
with about 11% of adults viewing pirated content in 2022 [3]. The U.S. economy
loses at least USD $29.2 billion in revenue each year due to pirated material
by estimation, with about 80% attributed to illegal live streams and videos [2].
China also suffers from VPWs. In 2021, China’s VPW visits reached 5.9 billion,
ranking among the top five globally [1]. China is expected to lose USD $9.78
billion through piracy in the movie and online TV revenue in 2022 [27].

In this paper, we design a Video Piracy Websites Detection (VPWD) archi-
tecture that supports the end-to-end process of active possible VPW collection to
detection. VPWD can continually collect data from the Internet and continually
learn features of VPWs to detect them with high accuracy.

When designing the architecture, we find that there are currently no pub-
licly available datasets containing English and Chinese VPWs’ content. Related
datasets [18, 32], which focus on Chinese VPWs, do not contain the website
contents and have small sizes. Therefore, we gather sufficient data of VPWs
and non-VPWs for benchmarking by crawling web pages from search engine re-
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sults using video piracy-related keywords. Our crawling toolkit is modified based
on [28]. Fig. 1 shows examples of VPWs, legitimate video websites, and other
websites found by searching keywords. We can see that VPWs have features that
characterize their site content. For example, they tend to put specific keywords
like “Watch free movies” at the top to attract visitors and rank higher in search
engine results. Legitimate video websites like Netflix and other websites contain-
ing articles about movies and online series are also discovered by the crawler,
but they are not VPWs. We aim to distinguish VPWs from others. After data
processing, we transform this problem into a binary classification problem for
text sequences and train a model to solve it.

We would like to highlight three challenges in VPW detection. (i) Perfor-
mance drop with single training. If we train a model only once, the perfor-
mance of the model may decrease when new datasets of VPWs arrive. We can
add new keywords to the crawling tool to expand the search range of VPWs,
consequently enlarging the dataset. The new data potentially have a different
feature distribution from the old data. In recent works [18, 28, 32] for VPW de-
tection, the data is collected once and used to train a model. We demonstrate
that such a fixed model will suffer from performance drops in later experiments.
(ii) Large runtime and resource cost. Training a new model on both new
and old data together whenever new datasets are collected would be highly time-
consuming and resource-inefficient. Training a separate model for each dataset
is not desirable either since models cannot utilize shared knowledge across the
datasets. (iii) Lack of old data accessibility. Some or all old training data
may be lost or unavailable due to storage limits or other factors, which is an
unfortunate but realistic challenge.

We incorporate continual learning methods into VPW detection to address
the three challenges above. In this setting, a model is trained sequentially on
multiple tasks. It enables models to learn from new tasks without explicitly re-
training on previous tasks. The goal is to achieve good performance on new
tasks while maintaining performance on old ones. Therefore, continual learning
can address the challenges by (i) training a model continually, (ii) doing so time-
and resource-efficiently by training only on new data and (iii) not training on
old data. The continual learning setting reflects common real-world scenarios.
Not all data is readily available for training, which is a non-ideal but realis-
tic situation. In our dataset, VPWs are collected with different keywords and
two languages. We shall give our VPWD architecture the capability to continue
learning when possible VPWs with new keywords or languages are added to the
dataset. Therefore, we further leverage our model to perform classification in a
continual learning setting. As far as we know, our work is the first to utilize con-
tinual learning for the specific task of piracy website detection. Another related
but distinct study by Ejaz et al. [6] applies continual learning in a vanilla neural
network for phishing attack detection. Specifically, we employ an enhanced ver-
sion [12] of a continual learning method known as Elastic Weight Consolidation
(EWC) [14] on a BERT [5] model to enable continual learning.

Contributions. In summary, our contributions of this paper are as follows:
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1. We propose a continual learning-based VPWD architecture and implement
the system for the end-to-end process of VPW collection to detection. The
architecture enables the model to learn continually and overcome perfor-
mance drops of over 8%, from which we demonstrate that a fixed model will
suffer when datasets of VPWs with new keywords or languages are added.
To the best of our knowledge, it is the first work to utilize continual learning
for piracy website detection.

2. We build a real-world dataset of features targeting VPWs by crawling the
results of VPW-related keywords on search engines. The dataset contains
14,254 possible English and Chinese VPWs, with 5,759 of them labeled. As
far as we are aware, it is the largest dataset for VPW detection, available
at https://github.com/LucyDYu/VPWD.

3. We conduct experiments on our dataset using continual learning algorithms
and achieve an accuracy of 96.4% on average, which is 0.5% higher than
without continual learning algorithms.

The rest of this paper is organized as follows. Section 2 discusses the related
work on website detection and continual learning. Section 3 shows the overall
architecture and describes the methods used to detect VPWs. Section 4 presents
the experiment results. Section 5 provides discussions and future work. Section 6
concludes the paper.

2 Related Work

This section discusses the related work on website detection and continual learn-
ing. Using computer programs and algorithms to detect certain types of websites
is more efficient than manual identification by humans. Continual learning in-
volves efficient learning methods that allow a model to learn new knowledge
when data is continually gathered rather than fixed.

2.1 Website Detection

Website detection encompasses a variety of tasks depending on the intended
purpose, including but not limited to piracy website detection, phishing website
detection, and malicious website detection. In terms of detection approaches,
there are generally three categories: non-machine learning, traditional machine
learning, and deep learning approaches.

Non-machine learning. Choi and Kwak [4] analyze features of contents
on piracy sites and form rules to detect them. Kim and Kwak [13] also employ
sophisticated rules, including regular expressions, to detect piracy sites.

Traditional machine learning. Naïve Bayes Classifier achieves the highest
accuracy in [15] for phishing website classification compared to Logistic Regres-
sion, Decision Tree, and other methods. Random Forest (RF) is used in [26] for
phishing website detection.

Deep learning. Zhang et al. [32] construct a heterogeneous graph of piracy
video websites and propose a graph model called HGNR for detection. Wang

https://github.com/LucyDYu/VPWD
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et al. [28] fine-tune a pre-trained BERT model to identify Chinese video piracy
websites and perform familial clustering. TEP-Net [18] is a fusion method of
one-dimensional CNN and RF, using domain names and third-party services’
information to identify Chinese pirated video websites. Ejaz et al. [6] propose
a continual learning-based framework to detect phishing attacks using a vanilla
neural network with continual learning methods, namely LwF [19] and EWC [14].

2.2 Continual Learning

In a continual learning (CL) scenario, a model is trained sequentially on var-
ious tasks. The objective is to achieve strong performance on new tasks while
maintaining performance on old ones without explicitly retraining. Continual
learning is challenging due to a widely acknowledged reason–catastrophic for-
getting: this phenomenon happens when a neural network is trained on a new
task and parameters are updated correspondingly, causing a significant drop in
performance on previously learned tasks [22].

Continual learning algorithms can be categorized into three main groups.
Regularization-based methods impose additional constraints on the parame-
ters through regularization terms, adding extra costs associated with parameter
changes. Architecture-based methods modify the model structure or use sepa-
rate sets of parameters for each task, enabling the model to learn new tasks
and keep knowledge of the old ones. Replay-based methods utilize some data or
a generative model to generate pseudo-data of previous tasks to help maintain
performance while learning new tasks.

Regularization-based. EWC [14] applies regularization terms as a penalty,
utilizing the diagonal of the Fisher information matrix to restrict parameter
changes elastically. EWC restricts the model from moving away from multiple
optimal points as the number of tasks increases. Huszár [12] proposes to enhance
EWC by considering only the previous optimal point and employing a single
regularization term, regardless of the number of tasks.

Architecture-based. Progressive Network [25] continuously expands the
network for new tasks and supports knowledge transfer via lateral connections.
APD [31] is an order-robust method that decomposes parameters into task-
shared and sparse task-adaptive parameters to prevent forgetting.

Replay-based. iCaRL [23] uses exemplar sets of the old task data. When
training for a new task, it uses distillation loss to minimize the change in the
output of exemplar sets. GEM [20] also uses data of old tasks as episodic memory
and allows positive backward transfer of knowledge from new to old tasks by
using loss in episodic memory as inequality constraints.

3 Methodology

In this section, we describe the methods we use in detail. Our VPWD architecture
consists of three components as illustrated in Fig. 2: A. Website Collection, B.
Dataset Construction, and C. VPW Detection with Continual Learning.
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Fig. 2. Video Piracy Website Detection (VPWD) architecture.

3.1 Website Collection

The first component of our VPWD architecture involves utilizing a crawling
toolkit modified based on [28]. We use a site crawler to collect URLs from search
engine results using VPW-related keywords and get 103,376 URLs. These key-
words include both English and Chinese phrases, such as “free movie” and “M
9¬↵” (watch for free). We keep a record table to track and avoid revisiting
existing pages to prevent redundant crawling. We modify the crawling toolkit
to keep both English and Chinese websites, remove duplicate URLs based on
domain names to keep one URL per domain, and filter out site index and traffic
analytics websites because they only contain statistics of other sites. This process
resulted in a dataset of 14,254 potential VPWs.

3.2 Dataset Construction

We use an HTML crawler to collect HTML files from the URLs. Note that we
only collect publicly available data for research purposes. We then extract text
from these files and combine it with the website’s domain, title, keyword, and
URL to create our dataset for VPW detection. Note that the data crawling steps
are similar to [28] because our crawling toolkit is modified based on this work,
with modifications in Section 3.1 and performing data cleaning of the extracted
text.

Our system requires labeled data of VPWs and non-VPWs. Two steps are
involved in labeling the collected data: manual labeling and model-assisted la-
beling. Using these two methods together allows us to obtain labels efficiently
while maintaining accuracy. We face the challenge that manually labeling VPWs
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is labor intensive since the annotators need to check the website to identify if
it is a VPW. Three annotators label 567 websites from our dataset, with 254
VPWs and 313 non-VPWs. Although it is ideal to manually label all data, it is
not feasible due to limitations in resources and time.

We label the remaining unlabeled data in a classical semi-supervised learning
fashion according to categories from [30]. As the results in [8] show, text classifi-
cation methods based on BERT models [5] outperform traditional machine learn-
ing algorithms with counting-based TF-IDF vocabulary [24]. Moreover, BERT
models have been employed widely in various NLP tasks such as federated mul-
tilingual modeling [9], question answering [10] and entity typing [17], demon-
strating the effectiveness and robustness of BERT models. Therefore, we adopt
a pre-trained BERT model with a final layer as the base classifier, fine-tune it
on the manually labeled data to learn relevant VPW features, and apply it to
infer labels for the unlabeled data. We only select labels from the model with a
probability over 98%.

By combining manually and model-labeled data, we obtain 5,759 labeled
websites with 2,794 VPWs and 2,965 non-VPWs for our task. Training another
BERT model on all the labeled data at once may appear repetitive due to many
labels generated by the previously trained BERT model, but this still falls within
the semi-supervised learning framework. Moreover, in our CL setting, we par-
tition the dataset into tasks and train a CL-based model sequentially on these
tasks. Therefore, the process is not simple repetition.

3.3 VPW Detection with Continual Learning

We divide our dataset into subsets and treat them as different tasks. We fine-
tune a BERT model sequentially on these tasks to simulate the CL setting. This
process simulates real-world scenarios where the crawler collects new VPWs and
our model needs to learn new VPW features while retaining learned knowledge.
Detailed experiments are in Section 4. As more keywords are added, our VPWD
architecture can crawl more data, label them (manual labeling is optional for
improving labeling quality), and continually learn VPW features to detect them.

The following subsections introduce preliminaries, the BERT classifier, and
the CL method EWC with an improved version in detail.

Preliminaries. Notations. We use bold lowercase, bold uppercase, and cal-
ligraphy letters for vectors, matrices, and sets, respectively. We list the key no-
tations in Table 1.

Problem Formulation. Given a sequence of tasks with datasets, continual
learning aims to train the model on new task data and maintain performance
on old tasks to overcome catastrophic forgetting.

BERT Classifier. Our VPWD architecture uses a pre-trained BERT model
with a final layer for VPW classification. We concatenate features with spaces
to form the text sequences. Then, we fine-tune the model using these input
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Table 1. Notations and descriptions.
Notation Description

D The entire dataset
A,B, · · · , T Task labels
DA,DB , · · · ,DT Partitions of D; D = DA tDB t · · · tDT

FA The Fisher information matrix (FIM) of task A
FA,i The i-th diagonal entry of FA; FA,i = [FA]ii
✓ Trainable parameters

Low error for task A

Low error for task B

EWC

L2

No penalty

Fig. 3. Graphical illustration of EWC. The figure is adapted and redrawn based
on [14]. The two ellipses represent low error regions of task A and task B. L2
penalty adds equal constraint on all parameters. Parameters may not learn the
new task when the restriction is severe or move outside the low error regions of
both tasks, as shown by the green arrow. EWC finds a solution in a low error
region of both tasks, as shown by the red arrow, thus alleviating forgetting [14].

text sequences and labels from the training set to learn VPW features. As the
BERT model can only accept 512 tokens, it is impossible to input whole text
sequences at once. Methods to process long sequences with BERT include direct
truncation, sliding windows [29], etc. By analyzing website text characteristics,
we find that information at the beginning of the sequences of VPWs is more
important, while subsequent text sequences tend to be less significant movie and
online series descriptions. Therefore, we choose to truncate from the tail end of
the text sequence as input to the BERT model.

We use the BERT multilingual base model (cased) [5] as our base model
because it is case sensitive and capable of understanding multiple languages.
Case information is important for our task since normal words in movie or series
titles with uppercase have different meanings. Since the model is pre-trained
on 104 languages, it provides the capability to understand numerous languages
in addition to English and Chinese. This enables our VPWD architecture to
continually learn features of VPWs when data in a new language arrives.
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Elastic Weight Consolidation (EWC). This section provides an overview of
EWC [14], a regularization-based CL method. We combine our fine-tuned BERT
model and an improved version [12] of EWC to enable our VPWD architecture to
continually learn features of VPWs. Kirkpatrick et al. [14] propose EWC, which
uses the diagonal of the Fisher information matrix (FIM) to restrict parameter
change. After training on task A and obtaining optimal parameters ✓⇤

A, task B

is trained with the following loss function in EWC [14]:

L(✓) = LB(✓) +
X

i

�

2
FA,i

�
✓i � ✓

⇤
A,i

�2
, (1)

where LB(✓) is the loss for task B; � is a CL regularization hyperparameter
reflecting importance of previous tasks; i is the label of each parameter; FA is
the estimated FIM via sampling from DA and calculating the expectation of
squared gradient of log-likelihood of each parameter. EWC approximates the
posterior log p (✓ DA) using a crude Laplace approximation around ✓⇤

A by only
using the diagonal entries of FA [14].

Compared to L2 penalty which is considered to be a special case of EWC
and imposes equal constraints on all parameters [16]:

L(✓) = LB(✓) +
X

i

�

2

�
✓i � ✓

⇤
A,i

�2
, (2)

FA,i imposes finer control over parameters, as it reflects the importance of pa-
rameters to the first task A. EWC allows parameters that are less important to
task A to update more freely to minimize the loss, while parameters that are
more important to task A cannot change much to maintain task A performance.
Fig. 3 graphically illustrates EWC and L2.

When a third task C is introduced, EWC adds another regularization term to
restrict parameters from moving away from the optimal point ✓⇤

A,B after training
on tasks A and B, on top of the previous regularization term. EWC performs well
to prevent catastrophic forgetting, but it has limitations. The model is restricted
from moving away from multiple optimal points as the number of tasks increases,
leading to suboptimal performance and sensitivity to task order since optimal
parameters of early tasks are repeatedly involved in the loss [12].

Improved Elastic Weighted Consolidation. Huszár [11, 12] proposes an
enhancement to EWC to address the limitation mentioned in Section 3.3. We call
it EWCH. EWCH considers only the previous optimal point and maintains only
a single regularization term, improving calculation efficiency and demonstrating
better performance. For three tasks, the new loss function in EWCH [12] is:

L (✓) = LC (✓) +
X

i

�

2
(FA,i + FB,i)

�
✓i � ✓

⇤
A,B,i

�2
, (3)

where FB represents the estimated FIM via sampling from DB . We further
leverage our fine-tuned BERT model in a CL setting using EWCH.
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Table 2. Dataset Distribution - Keywords and Languages
Dimension VPWs Non-VPWs Total VPW Rate

Keywords

M9¬↵
(watch for free) 136 23 159 85.5%

free movie 49 47 96 51.0%
online series 57 76 133 42.9%

Other keywords 2,552 2,819 5,371 47.5%

Languages English 518 2,144 2,662 19.5%
Chinese 2276 821 3,097 73.5%

Total 2,794 2,965 5,759 48.5%

4 Experiments

4.1 Dataset

We use 52 VPW-related keywords to crawl data of English and Chinese web-
sites. Table 2 shows sample numbers of VPWs and non-VPWs for some example
keywords. To simulate the CL setting, we divide the data into partitions and
train a model sequentially on these partitions. We partition the data by two
dimensions: keywords and languages.

Keywords. The starting point of our VPWD architecture is searching key-
words on the Internet. With more keywords, the crawler can collect more data.
We simulate this by partitioning our dataset by keywords. We sort keywords
and split them into three groups so that more related keywords belong to the
same group, simulating the case of adding related keywords to the crawler. We
get three datasets and name them KeywordA, KeywordB, and KeywordC, con-
taining 18, 17, and 17 keywords, respectively. Each group contains both English
and Chinese website data.

Languages. In this paper, we focus on English and Chinese websites, so we
partition the data by language and name the datasets as LanguageA (English)
and LanguageB (Chinese). Table 2 shows sample numbers of VPWs and non-
VPWs for English and Chinese. We simulate the situation where the crawler
collects VPW of a new language.

4.2 Experiment Setup

We employ the pre-trained BERT multilingual base model (cased) [5] with a final
layer for classification. We utilize the AdamW optimizer [21] to update neural
network parameters during training. Throughout the model training phase, we
use a learning rate of 10�5 and limit the training to 10 epochs. The batch size
per GPU is 16. The CL regularization � in keyword and language partition
experiments is set to 200 and 100, respectively. The training, validation, and
testing ratio for each dataset partition is 81, 9, and 10 percent, respectively. All
experiments are conducted with PyTorch on two NVIDIA TITAN RTX GPUs
with 24G memory. The models are run three times and the average performances
are reported with standard deviation in Table 3 and 4. Graphical figures illustrate
one run of the models in detail in Fig. 4 and 5.
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(a) Training on KeywordA (b) Training on KeywordB (c) Training on KeywordC

(d) Training on
LanguageA

(e) Training on
LanguageB

Fig. 4. Test accuracy when training on one dataset.

4.3 Research Questions Addressed

In order to evaluate our VPWD architecture for the VPW detection task, we
ask the following Research Questions (RQs):

– RQ1. How does a fixed model perform on new datasets?
– RQ2. What is the effect of the EWCH method when the model is continually

trained on multiple datasets?
– RQ3. How does EWCH as a CL algorithm compare with other CL algorithms

(L2) and non-CL methods (Fine-tuning)?

Performance of a Fixed Model on New Datasets (RQ1). We partition
the data according to keywords and languages as described in Section 4.1. We
train the model on one of the datasets KeywordA, KeywordB and KeywordC,
and report the test accuracy of the model on all datasets. Similarly, we train
the model on either of the datasets LanguageA or LanguageB, and report the
test accuracy on both datasets. We use the binary cross-entropy loss function.
Since the model is trained on one dataset, we label it as Single. We empirically
evaluate the performance drop in this section.
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(a) Training on
KeywordA

(b) Continual Training on
KeywordB

(c) Continual Training on
KeywordC

(d) Training on
LanguageA

(e) Continual Training on
LanguageB

Fig. 5. Test accuracy when training with EWCH.

As we can see from Fig. 4, when the model is trained on one dataset, the
performance on this dataset is high, but the performance on other datasets
is much lower. This performance drop occurs in both keyword and language
partition cases due to feature distribution changes. Fig. 4a shows that the model
trained on KeywordA achieves 96.8% test accuracy on KeywordA, while those
of KeywordB and KeywordC are 91.3% and 91.8%. Fig. 4e shows that the model
trained on LanguageB achieves 97.1% test accuracy on LanguageB, while that
of LanguageA is 88.8%, dropping over 8%. This result demonstrates that if we
train a model only once, when data of VPWs with new keywords or languages
arrive, this fixed model will have lower performance. Therefore, it is necessary
to continually train the model on new datasets.

The Effect of the EWCH Method on Continual Training (RQ2). We use
the binary cross-entropy loss and modify it as mentioned in Section 3.3 Eq. (3) for
EWCH. We train on the same model structure, keeping model parameters the
same on the first task for a fair comparison in the CL setting. Therefore, Fig. 5a
and 5d, as the first task in the keyword and language partition experiments
respectively, show the same accuracy for Single and EWCH.



VPWD using Continual Learning with EWC 13

Table 3. Performance comparison of different methods on each task using
keyword-based dataset partition.
Method Test Accuracy AUC Value Precision Recall F1 Score

KeywordA KeywordB KeywordC Average KeywordA KeywordB KeywordC Average Average Average Average
Fine-tuning 97.1±.3 94.7±.3 96.0±.7 95.9±.3 96.2±1.1 97.5±.2 99.3±.1 97.7±.4 97.5±.7 91.8±.1 94.5±.4

L2 95.7±.0 92.9±1.4 93.1±.3 93.9±.5 95.3±2.4 97.3±.8 97.6±.1 96.7±.9 93.3±.8 90.9±.4 92.1±.5

EWCH 97.5±.3 94.9±.6 96.9±.7 96.4±.3 98.0±.8 98.2±.1 99.4±.1 98.5±.3 97.8±.4 92.7±.4 95.1±.3

Table 4. Performance comparison of different methods on each task using
language-based dataset partition.
Method Test Accuracy AUC Value Precision Recall F1 Score

LanguageA LanguageB Average LanguageA LanguageB Average Average Average Average
Fine-tuning 93.8±1.6 97.5±.4 95.6±.6 96.0±1.0 99.3±.0 97.6±.6 96.0±.7 87.3±4.3 90.9±2.3

L2 95.3±.4 93.3±1.2 94.3±.8 97.2±.2 95.4±.7 96.3±.4 93.8±.9 90.4±.8 91.9±1.0

EWCH 95.1±1.4 96.8±.6 96.0±.9 96.5±.6 99.3±.1 97.9±.3 96.6±1.2 89.5±3.1 92.6±2.1

As we can see from Fig. 5, with EWCH, when the model continually trains on
a new task, performance on old tasks remains high in both keyword and language
partition cases. Fig. 5c shows that the model trained on KeywordC achieves
97.1% test accuracy on KeywordC, and 97.3% and 94.6% on KeywordA and
KeywordB. Fig. 5e shows that the model trained on LanguageB achieves 97.1%
test accuracy on LanguageB, and 96.6% on LanguageA. This result demonstrates
the effectiveness of EWCH and the necessity of continual learning.

Performance Comparison of CL Algorithms and Non-CL Methods
(RQ3). We sequentially train our model on tasks using CL and non-CL meth-
ods. Again, we train on the same model structure, keeping the parameters the
same on the first task for a fair comparison. For the second task and onwards,
different methods are used in training as follows:

Fine-tuning. We fine-tune the model sequentially on datasets of tasks.
L2. We modify the loss function as mentioned in Section 3.3 Eq. (2).
EWCH. We modify the loss function as mentioned in Section 3.3 Eq. (3).
As shown in Table 3 and 4, EWCH achieves the highest average test accuracy

in both keyword partition and language partition experiments. In the keyword
partition experiment, the test accuracy of EWCH is 96.4%, 0.5% higher than
fine-tuning. In the language partition experiment, the test accuracy of EWCH

is 96.0%, 0.4% higher than fine-tuning. EWCH also achieves the highest average
AUC value. The results show that EWCH is an effective choice of CL method.
We also report the average precision, recall, and F1 score, where EWCH achieves
the highest metric most times.

5 Discussions and Future Work

Complexity Analysis. EWCH uses the FIM, which is obtained by sampling
from task datasets and calculating the expectation of squared gradient of log-
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likelihood of each parameter. Assuming a fixed sample size and gradient cal-
culation is bounded by a constant, the time complexity for obtaining an FIM
is proportional to the number of parameters and tasks, i.e. O(P · T ), where P

represents the number of parameters and T represents the number of tasks. We
only calculate the FIM between the training of two tasks and then use it to
elastically constrain parameters. Since each task involves lengthy training, this
computation’s overhead is negligible compared to the total training time. EWC
also has low computational complexity in run time [14]. Therefore, our VPWD
architecture with continual learning capability is as efficient as without EWCH.

Limitations. Our VPWD architecture uses EWCH to enable continual learn-
ing. However, EWC and EWCH only use the diagonal of the FIM and assume
each parameter is independent of others [16]. This assumption is fragile and not
true in general. Moreover, EWC requires additional storage and memory to store
the diagonal of the FIM and the previous optimal parameters ✓⇤. The limita-
tions may impede the scalability of the framework especially when the number
of tasks is large.

Future Work. Our future work will focus on proposing new CL methods,
employing existing ones such as IMM [16], and conducting additional perfor-
mance comparison experiments. Based on our VPWD architecture, replacing or
combining EWCH with other CL methods is convenient. Moreover, provided that
the model capacity has not been reached, we can use this architecture to collect
data for other website detection tasks like phishing website detection and let the
model continue learning related features. In this way, our VPWD architecture
can expand into a more general-purpose website detection architecture. Further-
more, we have released our dataset. In case other studies introduce CL-based
VPW detection methods, we can incorporate them and conduct performance
comparisons using our dataset.

6 Conclusion

In this paper, we design the first CL-based VPWD architecture and implement
the system for the end-to-end process of VPW collection to detection. We build
the largest real-world dataset of features targeting VPWs. We conduct empirical
experiments on our dataset using CL algorithms and achieve an average accuracy
of 96.4%, which is 0.5% higher than without continual learning algorithms.
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